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ABSTRACT 

The capabilities that Mobile Ad Hoc Networking (MANET) technologies can 

provide to the Marine Corps are just fully coming into view.  These new 

capabilities represent a much more apparent symbiotic relationship between 

maneuver at the tactical level and the capabilities of a network that supports that 

maneuver.  However, in order to properly leverage these capabilities, a paradigm 

shift in what networks are and how they are managed must take place.   

As this new model of meshed, ad-hoc network devices presents a shift in 

how we employ our networks, the concept of network management must also 

shift in how we view planning and maintaining networks.  This research describes 

a communication framework and network management system (NMS) that 

supports the design of network aware systems that enable a robust self-

management capability in MANETs.   
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I. INTRODUCTION 

A. THE EVOLUTION OF MARINE CORPS COMMAND AND CONTROL 

For more than a decade, the armed forces of the United States have been 

involved in actions with non-state actors across a broad spectrum of operations.  

These operations appear to benefit from dynamic, distributed, and increasingly 

sustained independent operations by lower echelons of command (Conway 

2008).  In response to recent lessons learned, the United States Marine Corps 

(USMC) shifted from the battalion being the smallest echelon of command 

capable of sustained independent operations to the company (Conway 2008). 

Building upon this core concept, the Marine Corps has developed the 

concept for Enhanced Marine Air Ground Task Force (MAGTF) Operations 

(EMO)/Enhanced Company Operations (ECO) to organize the Marine Corps to fit 

this new era of warfighting.  The intent of the EMO/ECO concept is to drive 

development, training, organizing, and equipping of Marines to enable company-

sized MAGTFs.  In essence, EMO/ECO describes “an approach to the 

operational art that maximizes the tactical flexibility offered by true decentralized 

mission accomplishment, consistent with commander’s intent and facilitated by 

improved command and control, intelligence, logistics, and fires capabilities” 

(Conway 2008).  

This approach outlines the need for a profoundly robust, on-the-move 

communications capability for disparate networked tactical nodes; however, the 

Marine Corps has yet to fully implement such a distributed and infrastructure-less 

communications network.  Therefore, researchers must first conceptualize a new 

model for tactical communications.  The communications architecture must be 

one that fundamentally mirrors this inherently ad hoc employment concept and is 

robust enough to scale effortlessly.  An increasingly viable communications 

archetype that should support the EMO/ECO employment concept is the Mobile 

Ad hoc Network (MANET).  Network devices such as radios, unattended 
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sensors, and other mobile platforms that autonomously and dynamically 

establish network connections amongst themselves characterize a MANET.  

These devices will typically form a mesh network topology that does not rely on 

an established wired infrastructure to maintain those networks, and can remain 

active indefinitely, as the situation requires.     

MANETs are a natural choice to facilitate networking at the tactical edge: 

they enable the dynamic establishment and disestablishment of networks on 

demand as the operations dictate.  As detailed in the most recent Marine Corps 

Science and Technology Strategy document, the Marine Corps will “develop 

technologies to provide seamless, automated, self-healing mobile ad hoc 

networks and network management” (Mills 2012).  The Marine Corps clearly 

sees that the concept of a MANET naturally fulfills a critical component of its 

evolving communications architecture capability and that MANETs will be the de 

facto implementation for tactical communications.     

B. EMPLOYING TACTICAL MOBILE AD HOC NETWORKS (MANET) 

While not fully implemented, the Marine Corps is moving forward with its 

plans for implementing MANET technologies.  These efforts primarily focus on 

supporting communications at the company level and below.  At these levels, 

there are several key factors regarding communications platform: size, weight, 

and power (SWAP), scalability, restricted bandwidth, security, and network 

availability.  Taking into account these critical factors, an optimal MANET 

capability must be able to scale quickly, provide enough bandwidth to support 

voice and data requirements, and deny the enemy the ability to access or deny 

those network services.   

The Marine Corps Warfighting Lab (MCWL) performed rigorous 

experiments to develop capabilities that support ECO, and is the driving force in 

developing the Marine Corps’ MANET capabilities (Matkins 2010).  MCWL 

identified a small family of network devices systems that meet the key 

performance factors of MANETs at the lowest echelons of command and control 
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(C2), while bridging communications to adjacent and higher echelons of 

command.  Figure 1 illustrates this concept.  In the graphic, ground units are 

connected via a mesh network, and that network is interconnected via high-

altitude platforms and satellite communications to other remote ground units and 

naval operating forces.  This provides for robust information exchange 

capabilities at the tactical level, while enabling integrated command and control 

with adjacent and higher echelons of command. 

 

 

Figure 1.   USMC EMO/ECO conceptual MANET employment 
(From Mills 2012) 

The depicted systems are still experimental, but they met all preliminary 

performance requirements in extending meshed voice/data networks to 

subordinate elements within a company (e.g.,, fire teams).  However, though 

those systems met the initial experimentation requirements, refining the concept 

and developing the larger C2 system that they support remains an ongoing effort.  

The Marine Corps Combat Development Command (MCCDC) set the strategy 

for developing C2 concepts.  C2 systems must “provide a shared understanding 

of the battlespace…that multiplies combat power…via an adaptable, distributive, 
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and seamless system” (Mills 2012).  Understanding this intent and linking it with 

the emergence of extensive ad hoc mesh networking at the tactical level, there is 

a need to examine the implementation of more advanced network management 

paradigms to meet the changing operational concept.  

C. EVOLVING MARINE CORPS TACTICAL NETWORK MANAGEMENT 
 CONCEPTS AND EMPLOYMENT  

Despite the movement towards implementing the EMO/ECO concept, the 

Marine Corps’ current network management concept and capabilities fall short of 

achieving its vision.  This is due in large part to the lack of a fully integrated 

tactical network and network management system (NMS) capable of supporting 

near real-time operational and network management information at the company 

level.  Current NMSs in use at the company level are rudimentary because they 

typically support only small, static data networks.  These systems do not easily 

scale and do not incorporate the constantly changing environmental factors 

(e.g.,, constant physical compression and expansion, radio frequency (RF) 

interference, atmospheric effects) inherent in tactical operations.  This lack of a 

fully integrated NMS limits decision-making and situational awareness at the 

lower levels, and limits geographically dispersed military forces from leveraging 

the enhanced warfighting capacity envisioned by EMO/ECO.   

Network management systems must “provide technologies that include 

the capability to employ Modeling and Simulation (M&S) techniques to evaluate 

network performance, enable automatic recovery, alerting, and net intrusion 

countermeasures; and graceful network reconfiguration and/or degradation as 

nodes are lost and recovered” (Mills 2012).  This implies that an NMS must now 

integrate into many facets of kinetic operations, from wargaming courses of 

action (COAs), to dynamically accounting for network gaps, and changes in the 

scheme of maneuver as they occur.  What this means to the warfighter is that 

kinetic operations and the networks that support them are now becoming 

increasingly symbiotic.  Such highly dynamic and complex activities as combat 

operations are increasingly dependent on the networks that support them, 
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especially in the force employment scheme envisioned by EMO/ECO.  Likewise, 

the capabilities of those same networks are entwined with the scheme of 

maneuver that they support. 

1. Symbiosis of Network and Scheme of Maneuver 

The scheme of maneuvers associated with ECO portends a new level of 

interdependence between command and control (C2) systems (i.e.,, the 

combination of technologies, people and procedures) and the networks that 

support them.  This research envision that operators and managers instigate the 

network management concept from the bottom up in conjunction with the 

dynamics of battlefield decisions regarding elements like scheme of maneuver.  

In traditional network architectures, the preponderance of the network’s capacity 

originates from higher echelons of command with their larger capability sets, and 

filters down towards the lower echelons of command: the communication 

networks are designed to meet the largest breadth of operational requirements 

with a focus on capability at the higher echelon command operations centers 

(COC).  In other words, command, control and communications systems are 

primarily designed to support the higher echelon commanders’ requirements; it is 

not usual to consider units at the company level and below as sources of 

strength for the network, but instead as ancillary customers.  Communications 

planners, therefore, regulate most information exchange requirements at those 

lower echelons to simple broadcast voice and extremely limited data access.   

In the new distributed, highly dynamic, adaptive, ubiquitous presence 

network concept, the strength of the network lies with the nodes that comprise 

the physical edge of the network.  Thus, network management should begin at 

the lowest maneuver elements to facilitate coordination of decentralized 

operations; and as such, a true paradigm shift in the concept of what C2 means 

at the company level.  It requires a shift away from the model that a 

communications planner builds C2 networks in response to a previously 

established Scheme of Maneuver (SoM): operational planners develop the SoM 
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independent of the network that will support it.  This paradigm shift leads 

planners to realize that the maneuver elements’ scheme of maneuver and the 

network are reciprocally interdependent.  The network and SoM are symbiotic in 

that they mutually support each other, and vulnerabilities in one directly affect the 

other.  This interdependency represents a change in how planners approach the 

design of their communication architectures, especially in the case of EMO/ECO 

requiring the high integration of all the warfighting functions across an 

exceedingly distributed command and control structure.  With the emergence of 

EMO/ECO concepts and plans, the network is now a key defining characteristic 

of the commander’s capabilities and limitations.  As such, the management of the 

network represents a central enabling feature required for realizing EMO/ECO’s 

premise of sustained, distributed, and independent operations at the company 

level across the full spectrum of operations. 

Evolving the network concept for EMO/ECO not only requires an evolution 

in how the Marine Corps conceptualizes management of the network, but must 

also include the technologies (e.g., devices) that actually comprise the network.  

While it is apparent that mobile ad hoc networks will be prevalent at the tactical 

level, an examination of what those devices within the mesh network represent 

must also take place.  Following the premise that the scheme of maneuver and 

the network are highly interdependent, it logically follows that every actor at the 

maneuver element (e.g., a Marine, a vehicle, or a sensor) represents a physical 

node on the network.  Taking the assumption that most actors within the SoM will 

be Marines, sentient beings that actively participate in their environment, each 

individual Marine will have a mirrored presence by a node on the network.  This 

means that each network device on the mesh must exhibit some level of self-

awareness and cognizance in order to react and adapt to their surroundings; 

becoming active participants in their environment. 
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2. Hypernodes and the Emergence of Context-Aware, Agent-
Based, Policy-Driven Network Paradigms 

To more accurately represent the environment that the MANET will 

operate in, and manage the network they comprise, the nodes that comprise the 

mesh must exhibit some capacity for self-awareness and cooperative 

management.  Enabling some capacity for configuration, coordination, and 

management amongst nodes, without operator intervention is critical in this 

respect.  It is both implausible and impractical for a singular network operations 

center to account for the amount and scale of variation inherent in a MANET; 

thus, it becomes apparent that the nodes themselves (as active participants in 

their environment), become active agents in the network management activity. 

Developed at the Naval Postgraduate School, the 8th layer concept 

provides the framework for imbuing this notion of self-aware, self-controlling 

functionality.  By including an additional layer to the standard Open Systems 

Interconnect (OSI) 7 layer model that takes into account human and 

organizational factors, this additional layer enables this self-aware, self-

controlling capability, known as adaptive networking (Bordetsky and Hayes-Roth 

2009).  This enhanced capability requires a new communications protocol and 

architecture that enables each node to have its own specialized Network 

Operations Center (NOC) capability.  Those nodes, known as hypernodes, that 

contain this adaptive NOC capability incorporate a Sense-Analyze-Adapt 

feedback loop (Figure 2) and form the building blocks of adaptive networks  (Puff 

2011).  
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Figure 2.   NOC process model (From Boredetsky, Dolk, and Zolla 2004) 

Essentially, each hypernode represents an intelligent agent on the 

network and these “Intelligent agents [agent-based] can then be defined as a … 

device that can recognize its environment information, make sense of the context 

[context-aware], perform plausible reasoning, and decide on courses of action 

while collaborating with other agents” (Ntuen and Kim 2011).   

To incorporate this concept into military-specific applications this thesis 

introduces the application of a policy-driven functionality.  In this thesis, the term 

“policy-driven” describes the execution of mission-type orders in hypernodes.  In 

mission-type orders, the commander gives subordinates a clearly defined goal 

(the mission).  Framing that mission, the commander issues a commander’s 

intent statement that defines the desired endstate and specifies any restraints 

and constraints regarding accomplishing that mission.  Furthermore, the 

commander can also issue Commander’s Critical Information Requirements 
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(CCIRs), which detail general instructions and key information flows pertinent to 

the intent.  At that time, the subordinate leaders then implement the order 

independently with a large degree of freedom in execution, as long as they meet 

the commander’s intent and communicate those CCIRs as appropriate.  This 

operational concept allows a high-degree of flexibility of execution at the tactical 

levels while freeing the higher leadership from becoming marred in tactical 

details, hence facilitating much more efficient and effective management of the 

larger Scheme of Maneuver. 

A similarly intent driven agent-based, policy-driven network management 

model executed within network devices capable of supporting the hypernode 

concept in MANETs represent an evolution in network management, especially 

at the tactical level of combat operations.  Since hypernodes in the MANET now 

represent active participants in the network management role, the activity of 

network management is distributed across the entire network; whereas, the 

traditional network management model focuses on issuing reactive top-down 

orders to network devices.  The rapid growth in the number of devices combined 

with the dynamic and uncertain nature of tactical operations in a crisis makes this 

network management model untenable. 

3. Autonomic Network Management 

Another term to describe the family of devices that hypernodes represent 

is cognitive radio.  A cognitive radio, and by extension a cognitive MANET, is an 

intelligent wireless communications device or network based on a software 

defined radio that is aware of its environment and can adapt to variations to its 

inputs (Potier and Qian 2011). In traditional network management, the system 

monitors and reports key network metrics (e.g., bitrate loss, throughput) that 

would prompt an operator to take some action (e.g., turn off services, reroute 

traffic).  In contrast, autonomic networks provide a framework for nodes to 

acquire, predict, verify and autonomously act on network information.  The nodes 

would essentially self-adapt and act in response to network behavior in order to 
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meet specific action criteria affecting various network management components 

(Figure 3).  In autonomic network management, these specific action criteria are 

those mission-type orders previously described.   

 

 

Figure 3.   Cognitive Networks versus Traditional Networks (From Potier and 
Qian 2011) 

Since these specific action criteria represent the mission critical variables 

for a commander, clearly defining those criteria become a key enabling 

component for implementing the autonomic networking concept.  Another key 

aspect of autonomic networking is the hypernode’s capacity for predictive 

reasoning.  By being able to predict changes in those critical criteria, a 

hypernode is able to anticipate its own NOC’s activities and, in theory, coordinate 

those actions with other nodes before that event occurs.  Decision support 

system such as Case-Based Reasoning would enable predictive capabilities 

through the replay of previously recorded cases for forecasting future or planned 

network coverage in unknown situations based upon knowledge learned from 

previously recorded experiences (Puff 2011). 

D. SUMMARY 

Improving Command and Control (C2) is a central effort in the 

development of an EMO/ECO capability envisioned by the Marine Corps 
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Warfighting Lab (MCWL) (Price and Mchuen 2009).  The groundwork for 

developing the concept of a holistic Network Management System (NMS) to 

enhance EMO/ECO C2 is discussed in a recent NPS thesis—see Puff, 2011.  

This research thesis continues that work by building upon current cognitive 

network management models, predictive behavior analysis techniques and 

algorithms, and the 8th Layer hypernode concept.  The intent is to develop a 

framework and operationalize those concepts for tactical networks that will 

support the implementation of EMO/ECO concepts and strategy. 
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II. NEXT GENERATION NETWORK MANAGEMENT DESIGN 
CONCEPTS 

The management of MANETs at the tactical level present some unique 

challenges not faced by traditional network management practices and systems.  

Most traditional network management schemes employ a centralized 

management structure that typically requires detailed and accurate knowledge 

about the network.  These centralized network management systems work best 

in networks where the structure and operating environment are relatively static.  

Mobile ad hoc networks are typically highly scalable, decentralized, and dynamic; 

that requires a much different approach to network management.  Furthermore, 

MANETs in tactical combat environments intensify those challenges by 

introducing a greater degree of dynamism.  To better meet the challenges of on-

going and future combat operations, a new-conceptualization of the composition 

and role of those command and control (C2) networks that support combat 

operations at the tactical level is needed.  This chapter first addresses the current 

operational and technical Command, Control, Communications, and Computers 

(C4) vision of the Marine Corps.  This vision needs to identify the key challenges, 

concepts, and enabling technologies associated with MANET technology and 

management.  From this, the thesis introduces various operating models, 

network architectures, and management frameworks that serve as enabling 

factors to meet the demanding needs of a robust network management concept 

for tactical level MANETs.  

A. EVOLVING MARINE CORPS COMMUNICATION C4 STRATEGY AND 
 CONCEPTS 

1. Key Concepts for Marine Corps Tactical Command and 
Control In Support of EMO/ECO Objectives 

The concept of Enhanced Company Operations is part of a much larger, 

continuously evolving Enhanced Marine Air-Ground Task Force (MAGTF) 

Operations (EMO) concept.  The purpose of EMO has many different aspects, 
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addressing the entire spectrum of capabilities within a MAGTF.  Within this 

concept, several objectives are key: 

 Operate in a distributed environment where information and 
communications may be limited or non-existent and thus 
require informed decision-makers at the lowest echelons of 
command 

 Overcome challenges to access1 and mobility, and when 
necessary employ decentralized operations to assure 
access through multiple entry points. (Flynn 2010) 

 

Figure 4.   Concept for Enabling Advanced C2 (From Goulding 2012) 

As part of addressing these key operational considerations, MCWL has 

developed a conceptual framework advancing C2 in support of EMO (Figure 4).  

Part of a much larger C2 architectural concept, MANET plays a significant role in 

the tactical-level C2 architecture.  The challenges at this level emanate from high 

mobility, uncertain terrain, and a highly disruptive radio frequency (RF) 

environment.  Furthermore, these tactical-level operations are integral to 

                                            
1 Access: military movement into a theater of operations 
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decentralized operations; thus, entailing the need for C2 architectures that not 

only reach down to the individual Marine, but interlink various echelons of 

command and control seamlessly.  MCWL has done extensive research through 

a series of Limited Objective Experiments (Matkins 2010) on the proper enabling 

technologies to operationalize the conceptual framework—those technologies will 

ultimately fall into the hands of individual Marines.  

2. Marine Corps Experimental Command and Control Network 
Architecture 

In 2010, MCWL performed a series of experimentation designed to test 

the viability of various MANET technologies and receive feedback from a typical 

Marine infantry unit on its practicality in the field (Matkins 2010).  Within this line 

of experimentation, MCWL experimented with two leading MANET solutions for 

the platoon level that comprised part of the Next-Generation Command and 

Control (NGC2) program, the Distributed Tactical Communications System 

(DTCS), and the TrellisWare CheetahNet (TW).  DTCS leverages the existing 

Iridium satellite constellation system to provide a “netted Iridium” solution that 

creates a meshed radio network for ground units.  DTCS leverages the potential 

for beyond line-of-sight geographically distributed operations by using GPS 

satellites for establishing ground networks. CheetahNet in contrast, does not 

depend on any existing infrastructure to establish a localized mesh network and 

those networks have a robust self-forming and self-healing capability.  This 

essentially enables the dynamic formation of networks with minimal lag (i.e., 

networks can be rapidly created, fragmented into multiple operating networks, 

and reassembled).  This capability is critical to meet the demands of a highly 

dynamic operating environment, where information exchanges through 

ubiquitous networks are seamless to the operator.  For this reason, MCWL has 

adopted TW to represent the last mile in extending communications to the 

individual Marine (Matkins 2010).   
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3. Furthering Marine Corps Experimental Command and Control 
Concepts 

As part of the effort to extend the networking down to the individual 

Marine, MCWL is developing the tactical MANET network management system 

(NMS-TM) for the NGC2 radio systems (Donnelly 2010).  The primary objectives 

of this network management system are to allow users to “predict, monitor, and 

control network behavior; this specifically includes viewing and remotely 

managing variables such as node status, node location, attached equipment, 

channel selection, frequencies, error rates, and network utilization” 

(http://www.marines.mil/unit/mcwl/Pages/C4.aspx)  MCWL is also working with 

the Naval Postgraduate School to explore the inclusion of 8th Layer concepts 

(see Bordetsky and Hayes-Roth 2009) to enhance the prediction, monitoring, and 

control aspects of NMS-TM.  Some specific objectives of this investigation 

include (Puff 2011):  

1. Explore bandwidth adaptive solutions for hypernodes to adjust their 

network loads at the application layer. 

2. Examine how to make NMS-TM alert the user regarding the geographic 

adjustment of nodes to improve overall network performance. 

3. Research how hypernodes can support sensors to intelligently send 

data based on link health, network health, and bandwidth availability. 

4. Examine how hypernodes on the move can propagate sensor data in 

relation to link health and bandwidth availability. 

This study continues this investigation of the base hypernode concept by 

incorporating agent-based, policy-driven network management models and 

concepts.  As discussed earlier, this assumes a naturally emerging symbiosis 

between the scheme of maneuver and the command and control systems at the 

tactical level.  The design of a next-generation command and control system for 

the Marine Corps that melds C2 and maneuver suggests a bottom-up approach 

that focuses on the individual as the source of all action.  Thus, this new 
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approach to network management begins by finding a means of combining the 

radio operator, network operator and technical aspect of the devices themselves. 

B. TACTICAL NETWORK MANAGEMENT CHALLENGES AND 
 ENABLING CONCEPTS 

1. Key Challenges in Tactical Network Management 

Because MANET technologies are inherently independent of fixed 

infrastructures and can dynamically create networks as the need arises, they are 

a natural fit for tactical-level operations that are often highly distributed and take 

place in locations where existing infrastructure either does not exist or is 

unsustainable.  The diversity, scale, and unique dynamic nature of tactical 

MANET solutions require planners to assume similarly unique considerations in 

their employment and management.  

a. Constraints and Restraints Inherent in Tactical Networks  

The primary constraint in most tactical environments is that 

networks and their constituent devices (e.g., routers, switches, servers) have to 

operate in resource-constrained environments.  This constraint is the direct 

relationship that throughput and availability are relative to the size, weight, and 

power considerations of devices when implementing within the framework of 

dismounted operations.  A device that can transmit at 1000 watts may be optimal 

to cover large distances and provide more than enough throughput, but the 

weight requirement for such a device would most likely make it non man-portable 

due to the weight and size of the power supply and amplifier.  Thus, man-

portable devices with smaller power supplies that have a smaller power output 

(consequently, lower throughput and range) will be a primary driver of SWAP 

planning considerations. 

Furthermore, tactical operations typically occur in extremely volatile 

environments where RF and Electromagnetic (EM) interference and 

atmospherics have a large impact on RF propagation.  Combining the low 

transmission power with a high interference environment and RF propagation in 
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a tactical wireless network is further restrained.  These considerations restrain 

throughput as managers implement lower transmission power and secure 

transmission methods to meet the need for Low Probability of Intercept/Low 

Probability of Detection (LPI/LPD).  Figure 5 illustrates all these considerations.  

As these restraints and constraints acting on the network serve to weaken the 

overall potential quality and availability of network resources, managers must 

consider this fact as the driving planning factor for their networks. 

 

 

Figure 5.   The constraints of the tactical military environment (From: Burbank 
et al. 2006) 

The inherent feature of a self-forming and self-healing network in 

MANETs also becomes a planning consideration.  Since MANET nodes can 

autonomously join, disassociate, and re-join networks, traditional network 

management models are insufficient as the number of nodes in the mesh 
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increases (El brak et al. 2011).  This dynamism of node control and management 

presents unique network management challenges in ad hoc networks.   

b. Ad hoc Network Management Challenges 

Though MANETs may physically resemble flat architectures, where 

all network devices are directly linked to each other and interconnect via bridges 

(Figure 6), approaching management from the perspective of a flat network 

becomes problematic.  Due to the potentially large scale of MANETs, 

performance of the network and its management systems suffer because of the 

accumulative management overhead from maintaining the mesh, routing, 

individual node control functions, and other network management functions.  

Furthermore, considering highly dynamic and demanding environmental 

conditions that exist at the tactical level, the difficulty in predicting and managing 

network behaviors in a MANET becomes untenable, as the calculations required 

to predict and management network behaviors in a MANET become excessive.  

For effective management of such a large amount of management data and 

processes, it is intuitively apparent that the scope of network management must 

have some mode of compartmentalization.  This implies that managers must 

implement some new organizational model of network management for proper 

handling of the scaling and vigorous computational requirements inherent in 

MANETs.  
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Figure 6.   A view of MANETs as a flat extension of the network infrastructure 
(From Burbank et al 2006) 

Since nodes are both mobile and typically in rich scattering 

environments, link-level connectivity is unreliable and the network topology is 

highly dynamic (Halford and Chugg 2010); therefore, the characteristic self-

forming and self-healing capabilities of TW MANETs become a further key 

consideration where networks can be disconnected from the larger network for 

various periods.  Because most network monitoring schemes rely on consistent 

and reliable communication with network elements, traditional network 

management systems (especially centrally managed systems) do not sufficiently 

cope with monitoring and managing network elements that consistently establish 

and disestablish from the NMS.  Due to these inherent operating considerations, 

dynamic and distributed networks such as MANETs require management 

capabilities that are likewise distributed in nature (Burbank et al. 2006). 
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As discussed before, it now is apparent that applying a traditional 

top-down, centralized approach to management is unsound in the case of 

MANETs.  The management challenges for MANETs require a bottom-up, 

decentralized approach that considers the tactical maneuver element as an 

integral piece to the management solution.  In this view, the network is an active 

tangible participant in its environment, not a passive ephemeral service.   

Developing this framework of network management requires the examination of 

how to integrate several enabling concepts to comprise a true next-generation 

command and control system.  Critical elements of such a system will include a 

distributive network management paradigm, robust MANET technologies such as 

CheetahNet, application of the hypernode concept, and a predictive mechanism 

that enables an adaptive NMS capability. 

2. Enabling concepts 

a. Distributive Network Management 

As joint land operations tend to become decentralized, mission 
command becomes the preferred method of C2. Mission command 
is the conduct of military operations through decentralized 
execution based upon mission-type orders.  Successful mission 
command demands that subordinate leaders at all echelons 
exercise disciplined initiative, acting aggressively and 
independently to accomplish the mission.  Essential to mission 
command is the thorough knowledge and understanding of the 
commander’s intent at every level of command. Under mission 
command, commanders issue mission-type orders, use implicit 
communications, and delegate most decisions to subordinates 
wherever possible. (Joint Publication 3-31 2010) 

A key operational concept in conducting distributed operations is 

the effective execution of mission-type orders.  Joint Publication 3-31 describes 

why and how mission-type orders are the preferred method of C2 in 

decentralized (i.e., distributed) operations.  By definition, EMO/ECO has the 

defining characteristic of decentralized command and control and accedes to the 

tenets outlined by mission-type orders: commander’s intent, implicit 

communications, and initiative-driven action. The translation of the core 
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principles from mission-type tactics towards network management is attained by 

implementing networks where each device has a measure of self-cognizance 

and situational awareness and can act independently or in concert with peers 

based on restraints and constraints identified in mission-type orders from an 

assigned commander.  This resembles the concept of a distributed network 

management model.  This model employs multiple manager stations where each 

manager independently controls a sub network and may communicate directly 

with other manager stations (El brak et al. 2011).  In this way, distributive network 

management closely mimics the autonomic and dynamic nature of mission-type 

tactics.  In implementation, however, distributed MANET network management 

systems must perform management functions without a static infrastructure (i.e., 

deploy with an organic management capability). 

b. Infrastructure-Independent Networks 

Implementing network management at the tactical level begins with 

understanding that distributed operations, as envisioned by EMO/ECO, do not 

require an existing infrastructure for support of combat troops. Those troops are 

typically self-sufficient and do not need existing logistical support to commence 

operations.  Tactical networks must mirror this independence from existing 

infrastructure and be able to create and reconfigure, as needed, its own network 

topography and management infrastructure.  The Marine Corps Warfighting Lab 

has identified MANET technologies such as TrellisWare CheetahNet (TW-230) 

as the surrogate technology for developing enhanced ad hoc intra-/inter-platoon 

communications.  The TW-230’s use TrellisWare’s Tactical Scalable MANET-

Enhanced (TSM-E) waveform that provides extremely robust self-forming and 

self-healing characteristics.  Furthermore, the TW-230 is able to scale extremely 

well (i.e., incorporate thousands of nodes concurrently) and operate in difficult 

multipath environments through its use of barrage relay technologies.  This 

technology allows the TW-230 to resolve multiple transmissions from multiple 

sources as multipath components of the same signal. It is able to employ the 

simplest type of algorithm for packet routing: each radio re-transmits every 
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packet it receives (Puff 2011).  In this way, every Marine on the mesh network 

can potentially serve as a repeater for every other connected node on the mesh.  

The capabilities represented in the TW-230 meet a great deal of the 

requirements inherent in tactical man-portable communications: lightweight, low 

power (2W maximum transmission rate), resistance to RF interference, and 

excellent scalability.  The TW-230 is also a software-defined radio (SDR): it 

provides concurrent voice and data service through a programmable interface, 

and capabilities for self-configuration.  Just as tactical MANET systems must 

deploy their architecture independent of existing infrastructure; they must also 

deploy their own management framework independently.  Next is a discussion of 

this aspect of collective self-management by examining the models of autonomic 

computing and cognitive networks. 

c. Autonomic Operations and Cognitive Networks 

In a cognitive network, each node in the system is responsible for 

monitoring local network behavior and adjusting operational parameters based 

on mission policies.  In addition, cognitive nodes have the ability to learn new 

policies that can be shared with other nodes, improving their ability to adapt to 

similar network conditions in the future (Vanderhorn et al. 2010).  This builds on 

the distributive model of network management by moving the management 

function to every node in the network, vice to predetermined managers (i.e., 

typical centralized network management systems).  Through this framework, 

network management truly begins from the bottom-up.  Every node is a manager 

and cooperatively works with every other node to satisfy network features such 

as topology and reliability.  Furthermore, by localizing the network management 

function across all nodes within the network, the dependency of nodes to a 

central NMS is reduced.   

Cognitive networks propagate knowledge of the network throughout 

the nodes, so knowledge is gained, distributed, stored, and potentially acted 

upon by any network node.  This is in consonance with management functions 
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associated with ECO.  As the number of nodes within a MANET increases, the 

growing cost and management complexity of this approach becomes intuitively 

apparent.  Autonomic computing lends towards reducing that cost and complexity 

of network management (Ayari et al. 2009).   

The notion of autonomic operations derives from the observation 

that the human nervous system.  It governs the heart rate and body temperature, 

thus freeing the conscious brain from the burden of dealing with these and many 

other low-level, yet vital, functions (Kephart and Chess 2003).  In autonomic 

computing, given some high-level objectives from an administrator, every node 

manages itself independently, works together with other nodes across the 

network, and collaboratively decides upon actions that provide benefit to the 

whole network.  Developing an autonomic management framework is an 

evolutionary process that begins from highly manual operations and progresses 

towards highly autonomous operations (Hadjiantonis 2012): 

 Basic: manually operated management operations.  

 Managed: management technologies used to collect and 
synthesize information. 

 Predictive: correlation among management technologies 
provides the ability to recognize patterns, predict optimal 
configuration and suggest solutions to administrators. 

 Adaptive: management framework can automatically take 
actions based on available knowledge, subject to the 
supervision of administrators. 

 Autonomic: business policies and objectives govern 
infrastructure operation. Users interact with the autonomic 
technology tools to monitor business processes and/or alter 
the objectives. 

This list shows that autonomic operations evolve out of predictive 

and adaptive network operations by dynamically integrating the network and an 

organization’s business rules and policies without consistent human 

management (Figure 7).  This approach transcends predictive and adaptive 

management operations because it enables the network as a whole to extend 

those predictive and adaptive capabilities, thus making the network an integral 
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part in defining and executing the organizational strategy.  This reinforces the 

view that the network and the scheme of maneuver are symbiotic in tactical 

combat operations. 

 

 

Figure 7.   Evolving to Autonomic Operations (From Ganek and Corbi 2003) 

Cognitive networks and autonomic operations correspond to the 

hypernode concept discussed earlier as both require some high-level objectives 

that define a set of business policies.  In the case of tactical network operations, 

those business policies parallel the mission-type orders that drive distributed 

operations: they should provide guidance for the policies that the network’s 

management systems attempt to implement. 

d. Policy-Based Network Management (PBNM) 

In operations governed by mission-type orders, the military 

commander gives their subordinate leaders a clearly defined mission in sufficient 

detail to enable subordinate and supporting commanders understand the 

commander’s guidance and intent.  With that understanding, subordinates are 

allowed to build and evolve their supporting plans and actions according to 

conditions encountered (Joint Pub 3-31 2010). The subordinate leaders then 
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implement the order independently and in consonance with the commander’s 

intent, yet ever mindful of the importance of coordination with supported and 

supporting commands.   

In a policy-based network management framework, a manager 

translates complex management tasks into a collection of high-level policies that 

support monitoring of the network and automatically enforce appropriate actions.  

In general, policies are defined as Event-Condition-Action (ECA) clauses, (e.g.,, 

where during event E, if condition C is true, then action A is executed) 

(Hadjiantonis and Pavlou 2009).  This closely resembles the previously 

mentioned Sense-Analyze-Adapt feedback loop that forms the building blocks for 

an adaptive network management capability. Furthermore, the policies 

themselves are exclusive of any specific device and should only communicate 

what should happen in an ECA clause, not exactly how to implement it.  This 

allows an agent (i.e., 8th layer hypernode) to take into context its environment 

and decide on the best means to fulfill a certain policy.  By combining policy-

based network management with context-awareness, not only does a PBNM 

framework enable the translation of commander’s intent into network 

management policies, but also supports the employment of a network that is 

capable of emulating human cognition by perceiving events and acting upon 

them in accordance with orders.   

Because a policy-based network management framework reflects 

natural command and control concepts found in tactical combat operations, it is a 

suitable solution for implementing a highly distributed, robust tactical MANET that 

autonomously adapts to its environment; thus, complimenting combat operations 

at the tactical level.  Furthering this capability, this research thesis will detail the 

application of distributive, autonomic networks within the PBNM paradigm as 

they apply to Marine Corps tactical MANET management.  
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C. POLICY-BASED AUTONOMOUS NETWORK MANAGEMENT DESIGN 
 FRAMEWORK  

The model of a decentralized, policy-based MANET NMS is a critical 

component of the MCWL NGC2 concept.  Without understanding that high-

tempo, distributed operations require a similarly distributed network management 

paradigm, Marine Corps C2 will never fully support the tenets outlined in the 

EMO/ECO concept.  Hence, a principle capability is to develop computing 

systems that can manage themselves given high-level objectives that reflect the 

commander’s intent.  These systems will reflect the coupling of human intuition 

and decision making with the distributive computational capabilities of a MANET.  

Indeed, policy as a representation of this human intuition, is not only a basis for, 

but also drives the management capability of these systems.  The design of such 

a system is dependent on two primary aspects: (1) autonomic network 

architecture coupled with a policy-driven self-management framework, and (2) 

cognitive agents to populate the network and preform the collaborative 

computing.  

1.  Network Management Models and Evolving the 8th Layer 
Concept 

The primary challenge of employing a tactical MANET regards how to 

manage a highly scalable, complex network rapidly and effectively.  Management 

begins with identifying the operating model used in defining a management 

strategy.  There are four major types of operating models: centralized, 

distributed, hybrid, and hierarchical.  Figure 8 illustrates the distributed, hybrid, 

and hierarchical models applicable to MANETs.  In traditional static networks, 

centralized management architectures are sufficient; however, in the case of 

MANETs, centralized management becomes untenable due to issues with 

scalability and addressing the highly dynamic nature of a MANET (Znaty and 

Martin-Flatin 1997).  Hierarchical models are efficient, and closely resemble the 

natural command and control organizational structure in tactical units where 

management uses intermediate managers, each with its own management 
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domain (Hadjiantonis 2012).  Hierarchical models, however, do not scale well 

due several factors such as high message overhead, tendency towards single 

points of failure, and in partitioned networks, some nodes being left without any 

management functionality (El brak et al. 2011).  Distributed operating models are 

the optimal organizational model for MANETs.  They directly correlate to the 

barrage relay architecture of the TW-230 and are the most accommodating to a 

self-forming, self-healing network topology.  Yet, this purely distributed operating 

model is incompatible with the employment concepts outlined in EMO/ECO.  

Though EMO/ECO prescribes a distributed C2 and combat employment 

paradigm, military unit organizational structures still entail a level of hierarchical 

organization. 

To support tactical combat operations, the appropriate operating model 

must adopt a hybrid structure between hierarchical and distributed operating 

models.  A recent study on developing policy-based self-management MANET 

architectures presented such a hybrid model that utilizes clusters of nodes to 

form a loosely coupled hierarchy that can dynamically adjust between either a 

purely hierarchical or distributed management topology to a form a hybrid 

management topology (Figure 8).  This model is appropriate because it 

corresponds more closely with EMO/ECO’s C2 structure.  Its adaptability is 

crucial for maintaining a management function that supports the inherent self-

forming and self-healing aspect of MANETs.   
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Figure 8.   Example of Operating models: (a) hybrid, (b) hierarchical, 
(c) distributed (From Hadjiantonis 2012) 

Having an aligned operating model for a next-generation C2 system, the 

next step is identifying the underlying management framework within that 

operating model.  The 8th layer/hypernode concept serves as a basis for 

developing a fully autonomic network management framework.  The 8th layer’s 

concepts directly address the need to implement self-forming and self-controlling 

functionalities needed as part of an autonomic system.  It does this by defining a 

hierarchy of services that lie above the OSI application layer.  The 8th layer’s 

network management hierarchy of services (Figure 9) provides individual nodes 

with the capabilities of self-diagnosis (Network Element Layer), sub-network view 

(Network Element Management Layer), end-to-end performance (Network 

Management Layer), Quality of Service requirements (Service Management 
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Layer), and Service Level Agreement (SLA) negotiation (Business Management 

Layer). The 8th layer approach also uses a simple network management protocol 

(SNMP) events monitor with management information base (MIB) extensions in 

order to incorporate service layer and business layer elements (Bordetsky and 

Hayes-Roth 2009). 

 

Figure 9.   The 8th layer elements (From Bordetsky and Hayes-Roth 2009) 

The driving element behind implementing these services is the sense-

analyze-adapt feedback loop.  These feedback loops reflect basic management 

processes (Figure 10).  At the top levels, this process model must identify the 

mission or strategic level objectives. Service level agreement (SLA) constraints 

and performance metrics allow managers to measure the performance against 

the strategic objectives. This determines the specific variables to reconfigure in 

order to adapt the network configuration towards a more optimal solution in 

accordance with the SLA constraints (Bordetsky, Dolk, and Zolla 2004).   
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Figure 10.   Basic management process (From El brak et al. 2011) 

The management protocol used to communicate and manage these 

reconfiguration activities is the Simple Network Management Protocol (SNMP).  

The 8th layer uses an SNMP Management Information Base (MIB) framework to 

allow an NMS to remotely monitor and configure network elements in a 

manager/agent architecture (Figure 11).  Simple Network Management Protocol 

MIBs are a mature and stable technology, and form a good basis for a more 

refined, autonomic NMS framework due to its agent-based nature and 

implementation of a common data management structure. 

 

 

Figure 11.   Basic SNMP manager/agent architecture (From Puff 2011) 
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While the 8th layer concept addresses the core requirements for 

autonomic computing, a more elaborate structure must be developed to 

incorporate more robust self-management functions.  The use of an SNMP-

based communication framework implies a centralized or strictly hierarchical 

operating model.  Furthermore, while the concept of incorporating business rules 

into the standard OSI framework is a novel approach to a policy-driven 

framework, the MIB structure to monitor and enforce those policies will tend to 

resist a highly scalable and dynamic network topology (Potier and Qian 2011).  A 

problem with using SNMP-based management architecture approaches in 

MANETs is the cost of maintaining a hierarchy to disseminate requests and 

collect replies in the face of node mobility.  That cost is the introduction of 

additional overhead that increases energy consumption and decreases the 

available bandwidth (El brak et al. 2011).  The core concepts of the 8th layer 

(self-management, agent-based management, and distributive NOC functionality) 

serve as a sound foundation for further development of an agent-based, policy-

driven autonomic NMS.  However, for a true 8th layer hypernode to emerge, 

NOC intelligence and functionality must be holistically distributed and 

dynamically updated for systems to become more coherently adaptive, resilient, 

and less reliant on human system administrators for network management tasks 

(Oros 2007). 

2. Policy-Driven, Autonomic Network Architecture 

The principle of a policy-driven, autonomic network management 

framework furthers the 8th layer hypernode model by introducing the core 

concepts of a self-management capability.  Further defining those core concepts 

of self-management, there are four basic properties of elements that comprise an 

adaptive, autonomic system (Ayari et al. 2009): 

1. Self-configuring: This property refers to the capacity of the 

systems to configure and reconfigure in accordance with high-level 

policies in changing environments.  It involves the ability of both the new 
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component and the existing system to install, configure and integrate 

when a new component is introduced to a system.  The component would 

be able to incorporate itself seamlessly, and the system would adapt itself 

to the component’s presence.  The end system could then efficiently make 

use of this component. 

2. Self-healing: This property is the capacity of discovering and 

repairing potential problems to ensure that the system operates smoothly.   

3. Self-optimizing: The objective of self-optimization is to enable 

efficient operation of the system even in unpredictable environments.  An 

autonomic computing system will proactively seek opportunities to make 

themselves more efficient in performance and cost.  For this, the system 

should be aware of its ideal performance, measure its current 

performance against the ideal, and have strategies for attempting 

improvements. 

4. Self-protecting: Self-protection involves the ability to protect itself 

from cyber warfare techniques (e.g.,, malicious attacks and intrusions). 

In an ideal autonomic system, autonomic elements exhibit all of these 

capabilities (Hadjiantonis and Pavlou 2009).  In autonomic systems, autonomic 

elements are those elements that contain resources and contribute to the self-

management process.  An autonomic element is comprised of the following 

(Ayari et al. 2009): 

1. A monitor, which is responsible for knowledge gathering 

2. A knowledge base, which consists of a repository where policies 

and monitored information are stored 

3. An “analyze and plan” component, which analyzes knowledge 

and constructs plans of actions 

4. An executor, which reconfigures the system regarding to the 

output of, analyze, and plan processes.   
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These elements work together to constantly monitor knowledge of 

the node’s external environment, construct plans based on analysis of that 

knowledge, and then execute those plans that best fit the overall objectives 

issued by the administrator.  This cycle of self-management builds upon a simple 

closed loop system (Figure 12). 

 

 

Figure 12.   Closed Loop System (From Hadjiantonis and Pavlou 2009) 

By using a system’s output as feedback, a feedback loop allows the 

system to become more stable and adapt its actions to achieve desired output.  

This process forms an autonomic control loop (Ganek and Corbi 2003).  Figure 

13 illustrates the elements of an autonomic element coupled with an autonomic 

control loop that elaborates on the basic management process illustrated earlier 

in Figure 10.   
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Figure 13.   An Autonomic Control Loop (From Ayari et al. 2009) 

a. Early Attempts at MANET NMS Design 

Early efforts to design MANET NMS’s focused on the monitor and 

execute aspects of autonomic elements, leaving out much of the analyze and 

plan aspect, as well as addressing the fundamental differences between static 

and ad hoc networks.  The Ad hoc Network Management Protocol (ANMP) is an 

example of this early work. ANMP is an SNMP derived protocol designed 

essentially to transition the management paradigms of static wireline networks 

towards mobile ad hoc networks.  The basic underlying model of ANMP involves 

clusters of managers and clients that form a hierarchical management framework 

(Figure 14).  However, since it is SNMP-based, due to the size and highly 

dynamic topologies inherent in MANETs, it becomes infeasible to manage nodes 

using the conventional, centralized and hierarchical management approach of 

SNMP.  Also, as a derivative of SNMP, ANMP also lacks the efficiency, reliability 

and robustness expected in a protocol for MANETs (Iskander and Younis 2008).  
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Figure 14.   ANMP Cluster Network (From Potier and Qian 2011) 

Following the lessons gained from early attempts such as ANMP, 

recent work has focused on policy-based, autonomic network management 

architectures (Hadjiantonis and Pavlou 2009).  Two recent examples of an 

architecture that couples policy-based management and autonomic networking 

are the Autonomous Decentralized Management Architecture (ADMA) and 

Dynamic Re-addressing and Management for the Army (DRAMA).   

b. ADMA Core Concepts 

ADMA’s proposed solution to distributive MANET management 

closely mimics the core 8th layer hypernode concept where each node contains 

some internal NOC capability that takes into account some high-level policies to 

make autonomic management decisions.  In contrast to the 8th layer ADMA, 

does not implement an extension to the OSI stack as a means to implement and 

enforce policy.  Instead, each node contains elements of an internal autonomous 

agent; those elements include (1) a Local Policy Decision Point (LPDP) that 

governs resource and node configuration, (2) a monitor that collects and stores 

local and external information, (3) a Policy Enforcement Point (PEP) that 

enforces LPDP decisions, and (4) a Local Policy Repository that stores policies 
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locally in the node (Figure 15).  Furthermore, ADMA defines four primary classes 

of policy: (1) Configuration (global base configuration settings), (2) 

Reconfiguration (policies that dictate actions in response to an event or threshold 

value), (3) Monitoring (specifying what information to monitor), and (4) Meta-

policies (specifying characteristics of policies such as enabled/disabled or 

precedence) (Ayari et al. 2009).  This is a more specified approach to policy that 

focuses on the agent itself compared to the 8th layer where the focus is on 

services provided to external network.  The ADMA framework supports each 

element of the agent working independently and reduces overhead by focusing 

policy management at the node rather than over the network.  This approach 

utilizes a highly decentralized management approach where every node is 

autonomously responsible for network management functions across the mesh.  

While more directly representative of a MANET topology, the highly decentralized 

focus of ADMA lacks the ability to support the broader network management 

functions needed in an EMO/ECO employment scenario (e.g., collaborative 

response to events that affect more than one node simultaneously, mechanisms 

to adjust global policies as an adaptation response to the environment). 

 

Figure 15.   ADMA node architecture 
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c. DRAMA Core Concepts 

While DRAMA also uses a distributed agent architecture, DRAMA 

employs a robust policy management organizational model.  In DRAMA, the 

policy agents are distributed in a tree hierarchy that rapidly adapts to changes in 

the MANET topology (Figure 16).  While ADMA approaches each agent as its 

own complete entity capable of every management function, DRAMA uses a 

role-based agent paradigm.  As illustrated in figure 16, Local Policy Agents 

(LPAs) are the base elements of DRAMA instances.  They are responsible for 

gathering network status data and managing networking elements locally.  

Domain Policy Agents (DPAs) are intermediate nodes in the tree hierarchy; they 

receive summarized reports from subordinate LPAs and manage local elements.  

DPAs report the combined status of their local elements and their subordinate 

reports to their respective masters, which could be other DPAs or the Global 

Policy Agent (GPA). At the top of the hierarchy is the GPA that receives reports 

from subordinates and forms the root of the tree.  DRAMA includes provisions for 

dynamically adjusting roles and message store-and-forward capabilities.  

Combining the distributed agent model of ADMA with the dynamic role and 

topology configuration ability of DRAMA lends towards further development of 

the Marine Corps tactical MANET concept and an optimal operating model for an 

EMO/ECO NGC2 system. 

 

 

Figure 16.   DRAMA Architecture (From Wolberg et al. 2011) 
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3. Developing a Contextual Self-Management Framework 

Even though ADMA and DRAMA present excellent operating models for 

MANET management and provide for policy-driven networking, they do not 

address a contextual framework.  As a critical element of enabling self-

management, the Marine Corps must develop a contextual framework for 

evolving current network management capabilities towards more autonomic 

networks.  While policy-based management concepts constitute a great portion 

of an NMS, policy-based management concepts address primarily only the 

Planning and Plan and Execute components of an autonomic system.  Towards 

developing a complete autonomic system, the context-aware framework defines 

the Monitor and Analyze functions (Figure 13).  Figure 17 elaborates on this and 

each function.  Furthermore, the specification of policies and context, together 

with their interaction, form the essential knowledge element (Hadjiantonis 2012).   

This knowledge element provides for a prominent feature of a next-

generation NMS: the capability of the NMS to learn through experience and 

refine policy over time.  By combining a policy-driven management concept with 

a context-aware framework, systems that autonomously refine and optimize the 

network begin to emerge.  This ability for a network to emulate its human 

administrators is a critical element in the Marine Corps’ NGC2 NMS vision.  This 

will form a link between human cognition and machine computational abilities, 

and reflect the emerging symbiosis between a maneuver force and its constituent 

networks. 
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Figure 17.   Mapping context-awareness and PBNM to an autonomic manager 
component (From Hadjiantonis 2012) 

This evolutionary process emerges from enabling a context-aware 

capability across the MANET.  To provide for this context-aware component in 

this self-management framework, the framework must first provide a context 

taxonomy that assists the structuring of a node’s monitoring capability.  By 

unifying a common taxonomy for MANETs, nodes have a common framework by 

which to share awareness across the network, and eventually share knowledge 

of the environment across the network, regardless of any node’s specific physical 

location.  Hadjiantonis (2012) describes taxonomy of context information that 

distinguishes persistence, fluidity, and nature (Figure 18).  This taxonomy is 

general enough that it supports a large range of descriptors, but is exhaustive 

enough to provide a basis for context modeling and eventually policy 

enforcement.  The Naval Postgraduate School has conducted research on 

defining ontologies within tactical networks (Hayes-Roth and Blais 2008) to help 

define contextual relationships.  This ontology serves to provide a holistic 
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worldview that is consumable by both human and machines, enabling the human 

operator to intuitively see the network from the combined perspective of the 

entire network. 

 

 

Figure 18.   A Taxonomy of context information (From Hadjiantonis 2012) 

After defining taxonomy for context information, next comes an 

examination of the framework for the storage and distribution of context 

information.  The 8th layer hypernode concept provides a good working 

foundation for storage of this taxonomy and proposes a MIB-based specification 

for such context taxonomy (Bordetsky, Dolk, and Zolla 2004).  Similar to SNMP 

MIB variables, contextual taxonomy can be stored as a MIB database, identifying 

contextual information within an Object Identifier (OID) tree.  This approach 

works well in terms of contextual taxonomy because the taxonomy is not 

expected to change rapidly, and it remains relatively static and independent of 

the topology or scale of the network.  The 8th layer conceptual framework 

furthermore describes a knowledge base as the primary mechanism for storing 

contextual taxonomy and policy within a cognitive network and would serve as 

the network’s collective “memory” of contextual experiences (Bordetsky and 

Hayes-Roth 2009). 

Again, as Hadjiantonis posited, the specification of policies and context, 

together with their interaction, form the essential knowledge element. Policies 

encapsulate high-level directives as well as low-level actions to achieve 
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management objectives. Context modeling, on the other hand, provides a 

layered view of network conditions by collecting and combining simpler context to 

complex ones.  Because this knowledge is a central component to the self-

management cycle, it follows that this information must reside across all nodes.  

This distributed storage mechanism is critical in the case where a node is 

disconnected from the larger mesh.  Hadjiantonis proposes a Distributed Policy 

Repository (DPR) as a means to extend the 8th layer knowledge base concept 

by employing a distributive storage and replication mechanism for both context 

and policy together.  The DPR specification details a separate physical repository 

for policy and contextual information.  The DPR framework distributes policy 

repositories across a cluster/hierarchy similar to the DRAMA policy distribution 

model where policy is stored globally equal to every node on the network and 

assumed persistent and global.  In contrast, contextual information is assumed 

highly localized and temporal, only requiring temporary storage and only the 

information required for the inference of network-wide context is distributed 

(Hadjiantonis and Pavlou 2009).  

In their research, Hadjiantonis and Pavlou propose a hypercluster 

organizational paradigm for context and policy information flows (Figure 19).  

This hypercluster structure is an instance of the hybrid operating model by 

incorporating a distributed management federation of one or more privileged 

nodes with extended capabilities (Hadjiantonis and Pavlou 2009).  As nodes join 

or disassociate from the network, this distributed federation of managers can 

adjust and reorganize as needed.  This model provides for a highly dynamic 

management structure that reduces redundancies in management information 

flows and can adapt for localized management to support the self-forming of 

meshes. 
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Figure 19.   Illustrating the hybrid organizational model implementation of the 
components of context and policy information flow (From Hadjiantonis and 

Pavlou 2009) 

In describing an autonomic system that is able to generate the 

interdependence envisioned by the distributed command and control model of 

EMO/ECO, this research has identified the fundamentals of this self-

management framework:  

 a distributive network management paradigm that focuses on 
network management from the bottom-up, vice a centralized top-
down approach  

 a policy-based network management framework that derives 
context from every node on the network as a trigger for executing 
policy decisions 

 an autonomic network paradigm that leverages a PBNM framework 
for enabling self-management functionality   

These elements taken together describe the framework for evolving a 

network management paradigm from centralized, operator-dependent NMS 
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towards an autonomic operator-cooperative NMS.  Without having a framework 

and mechanism for predictive and adaptive capabilities within a MANET NMS, 

the evolution from basic/managed networks to adaptive/autonomic networks will 

never occur.  To meet this goal, this research thesis uses the frameworks 

described by ADMA, DRAMA, and other research on policy-based network 

management and extends them to include an agent-based predictive/adaptive 

reasoning component.  The mobile agent represents an instance of what the 8th 

layer hypernode concept refers to an a node’s internal NOC.  The mobile agent 

in the case of tactical MANET NMS’, refers to a common collection of logic and 

software that resides across all nodes that serves as the mediator between 

physical management of the node and the logical autonomic process that 

permeate the network. 
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III. AN AGENT-BASED AUTONOMIC C2 FRAMEWORK IN 
SUPPORT OF EMO/ECO 

A. AGENT-BASED AUTONOMOUS NETWORKS IN TACTICAL MILITARY 
 APPLICATIONS 

Mobile agents have been proposed as a means to balance the burden of 

processing management data and decreasing traffic associated with 

management of ad hoc networks (Mishra and Sharma 2010).  In that proposed 

framework, agents conceptually represent a human operator residing within the 

node itself.  Just as human operators are able to perceive their environment and 

exist independently or collaboratively work together, mobile agents exhibit similar 

traits to their human counterparts.  As autonomic collections of NMS programs 

and logic, agents represent a specific instance of that NMS intelligence.  This 

enables an agent to either exist independent of the rest of the network or work 

collaboratively with other agents to perform collective execution of network 

management activities (Mishra and Sharma 2010).  This employment scheme 

conceptually supports the bottom-up network management paradigm, where the 

strength of the network originates from the nodes (i.e., the availability of the 

network directly correlates to the presence of a node, the preponderance of 

network management activities originate from each node).  The nodes contain 

the bulk of the network management capability and the means to allow the 

network to permeate down to every individual actor on the battlefield, whether it 

is a Marine, a HMMWV, or a weapon system.  

To realize this employment scheme, it is imperative that every node 

correlate to an actor on the battlefield.  One Limited Objective Experiment (LOE) 

conducted by MCWL concluded that it was not imperative for every Marine to 

carry a TW-230 device (Matkins 2010).  This conclusion incorrectly understates 

the symbiosis potential for MANETs, and implies that MANET technologies are 

just a kind of voice radio that just happens to provide data features.  For the 
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purposes of the LOE, MCWL only examined the capability of the devices as 

simple extensions of network links and as a result, sold the potential capability 

short.     

The previous chapter discussed how to extend the potential capability of 

symbiotic network/maneuver operations by introducing a conceptual framework 

for how to apply agent-based autonomic networks to support adaptive tactical 

operation’s requirements.  Furthermore, it discussed how predictive and adaptive 

capabilities precede a true autonomic system.  Predictive modeling is critical to 

efficient management of tactical networks since things change so fast, the only 

way to keep up with those dynamics is to proactively manage rather than 

reactively manage.  The inclusion of predictive elements to cognitive agents 

enables those agents to evolve beyond being a reactive element and become 

proactive actors in their environment.  

B. MECHANISMS FOR DRIVING ADAPTIVE REASONING IN 
 AUTONOMIC NETWORKS  

Essential to developing a predictive/adaptive capability begins by 

developing a framework for the feedback loop mechanism.  The 8th layer 

concept provides a vision for how to extrapolate a procedural model of the basic 

autonomic feedback loop (Figure 20).  In the 8th layer, each hypernode would be 

able to evaluate its own controllable variables and attempt to optimize its own 

sub network, either independently, or in concert with adjacent hypernodes 

(Bordetsky and Hayes-Roth 2009).  This would form a feedback loop, as 

changes (either as a function of the environment itself or actions previously taken 

by the hypernodes) are made to the shared network model. 

As the feedback loop is heavily dependent upon the ability to process 

contextual information, it follows that there must be some mechanism for 

enabling context awareness at every node, and the ability to share that context 

across the MANET.  This research examines three prominent features of storing, 
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communicating, and deriving meaning from contextual information: a knowledge 

base, the concept of Valued Information at the Right Time (VIRT), and Case-

Based Reasoning (CBR) mechanisms. 

 

Figure 20.   Generalized adaptation model for hypernodes in autonomic 
networks (From Bordetsky 2009) 

1. Knowledge Base 

As mentioned earlier, the knowledge element of the autonomic system 

serves as the central element around which the entire feedback loop revolves.  

From the monitoring element, through the context-awareness mechanisms, and 

through the policy resolution and enforcement mechanisms, the knowledge 

element drives every function.  As such, the knowledge element serves as the 

base for elements of every portion of the cycle.  The knowledge base represents 

a repository for the historical shared awareness in terms of condition/action 

couplings.  These couplings come from a combination of either a priori (in the 

case of experiencing previously known conditions) or a posteriori (in the case of 
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experiencing new conditions) contextual information and resulting policy actions.  

These couplings become more elaborate and descriptive as more scenarios are 

added to the knowledge base, and more refined as sense-analyze-adapt 

scenarios are also added to the knowledge base.  Hadjiantonis and Pavlou 

(2009) described the contextual framework for this kind of knowledge base in 

their DPR specification (Figure 21).  The DPR framework also addresses the fact 

that as the number of policies increase, there exists the likelihood that policies 

will come into conflict due to either a specification error (e.g., two policies define 

contradicting actions for the same event) or because of application-specific 

restraints (e.g., the prescribed policy action conflicts with the mechanical 

parameters of the device) (Hadjiantonis and Pavlou 2009).  To address these 

conflicts, DPR proposes metapolicies (e.g., hierarchical precedence, user-

defined preferences, if-then-else conditionals) that can recognize these policy 

conflicts and serve as mediators. 

 

 

Figure 21.   Policy-based and context-aware components and interactions 
within the DPR framework (From Hadjiantonis and Pavlou 2009) 
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The DPR framework specifies that nodes only share contextual 

information as needed, and distribute policy globally, regardless of context of the 

node.  However, since this research posits that the network management 

function emerges from a holistic, shared worldview from every node in the 

network, it is critical to define a framework that supports sharing meaningful 

contextual information from everywhere in the MANET.  Extending the DPR 

framework, this research introduces the VIRT concept as a means to develop a 

shared worldview through exchanges of meaningful contextual information and 

concretely define what meaningful means in the context of network management 

activities across the mesh. 

2. Semantic Information Models and Valued Information at the 
Right Time (VIRT) 

There are two significant constraints that affect network management of 

complex networks such as MANETs, limited bandwidth across the mesh, and 

limited time for operators to process and act on information.  It makes an 

enormous difference to assure that only relevant information is delivered in a 

timely manner to each recipient.  Hence, the network should become aware of 

the dynamic information requirements of each recipient.  The network can then 

assure its limited resources are allocated first to assuring such valuable 

information reaches its intended recipients (Bordetsky and Hayes-Roth 2009).  

The VIRT concept addresses this inherent constraint of limited bandwidth 

and timeliness, and acknowledges that just providing more information to 

operators across the network does not necessarily correlate to a greater shared 

awareness nor improved performance at attaining goals.  VIRT’s approach to 

reduce “information glut” is to focus the entire network on the recipient’s 

perception of valued information, and cause the network to filter and prioritize 

appropriately (Hayes-Roth 2006).  Studies on the application of VIRT observed 

that by using the VIRT framework, there is a five orders of magnitude reduction in 

information volume across a network (for more details see Bordetsky and Hayes-

Roth 2009).   
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This recipient-centric approach is similar to the relationship between the 

CCIR and PBNM architectures. As discussed earlier, CCIR are a component of 

those mission-type orders that preceded the establishment of policy-based 

decision-making.  The VIRT concept describes a modified control loop, where 

only information that is valuable to the consumer is fed back into the loop (Figure 

22).  The VIRT concept refers to this valuable information as a Condition of 

Interest (COI).   

 

 

Figure 22.   A basic architecture of the VIRT concept (From Hayes-Roth 2006) 

Extending this concept builds towards a framework for how an autonomic 

system can communicate contextual information and policy decisions across the 

network.  In the logic of the monitoring system of each autonomic hypernode lies 

a dependency monitor that is fed by a VIRT registry.  This registry defines COIs 

for nodes across the network.  This is the third aspect of the previously discussed 

knowledge base (see chapter 3, section b.1).  Combined with context and policy 

repositories, a VIRT repository contains metadata that defines how the coupling 

of context with policy is turned into action.  Essentially, these COIs serve as 

trigger mechanisms for enacting policy enforcement across the MANET.  Not 

only do these COIs serve as a trigger mechanism for policy action, but also a 

means to develop a more meaningful shared world model by only sharing critical 

network COIs such as (Oros 2007): 
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 The current/expected/forecast tactical network topology    

 Identification and location of critical C2 nodes    

 Alerts when any critical C2 node have impending 
power/hardware/software failures 

 Alerts when peer node transmission packet loss exceeds a certain 
threshold 

 Available CPU processing time of any adjacent node 

 Alerts when a node approaches its communication/reception 
threshold (e.g.,, bandwidth/RSSI/Signal Correlation/SNR, etc.) 

Conditions of Interest such as these are representative of a semantic 

model that both human and computer operators can interpret.  Defining this 

semantic model provides a way to bridge the gap between machine and human 

cognition.  This lends towards more intuitive network management systems 

because common languages (or common translations between human language 

and computer language) are useful to developing a more complete situational 

awareness picture and more advanced policy interactions.  Research at NPS has 

explored development of such a semantic object model (Figure 23) for the 8th 

Layer hypernode concept (Oros 2007).  While still developmental, this model 

serves as a basis for the structure of a VIRT COI repository.  

  

 

Figure 23.   An 8th Layer network management semantic object model (From 
Oros 2007) 
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3. Case-Based Reasoning (CBR) 

Case-Based Reasoning is an automated decision support system concept 

that uses the knowledge gained from previous experiences to propose and refine 

solutions to new problems.  As a decision-support concept, CBR provides a 

conceptual framework for how an agent processes policy and context information 

to develop knowledge, and uses that knowledge as a basis for adaptive 

reasoning.  The CBR architecture includes the case library where previous 

situations and their solutions are stored. A query of the case library, based on a 

discovered anomaly, reveals if any matching solutions already exists. In the case 

of a “never before” detected situation, the closest match from the search is 

adapted to the current situation.  The case library is the updated with the problem 

and its solution once it is resolved (Puff 2011).  This retrieve, reuse, revise, and 

retrain cycle is illustrated in figure 24.   

Besides using COIs as a means to derive meaning and support decision 

making from a context-aware autonomic system, Case-Based Reasoning can 

also be used as a mechanism to store the collective memory of the network’s 

experiences in a knowledge base.  Through a CBR decision-making cycle, the 

context/policy/VIRT repositories combine to create a knowledge base that serves 

as a memory of the collective mesh node’s experiences. 
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Figure 24.   CBR Cycle (From Aamodt and Plaza 1994) 

Not only does a CBR approach help to solidify a holistic worldview across 

the network, but it also serves as a driving mechanism for VIRT activities.  In the 

CBR cycle, VIRT COIs are compared to the case library in the retrieve and reuse 

phases, but then, though the revise and retrain phases, VIRT revises COIs 

across the network and communicates any relevant actions that were taken by 

the node.  The result of combining CBR and VIRT further reduces the load over 

the network (since less bandwidth is needed to communicate management 

functions) and increases the speed in analysis of policy enforcement (since 

policy enforcement relies on event/action correlations).   

C. MODELING AND SIMULATION FOR ADAPTIVE MANAGEMENT 

Just as this thesis research considers that MANET agents emulate 

individual human agents and their capacity for reason, it follows that in order to 

properly represent an agent’s environment, an examination of how the 
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relationships between agent’s builds towards a somewhat sociological aspect 

must take place.  Recent research explores how the dynamic behaviors of 

MANET agents arise from interactions between agents and their environment 

(Ntuen and Kim 2011).  In Ntuen and Kim’s research (2011), they propose a 

cognitive model that approaches MANET as a cognitive social system of 

intelligent behaviors between MANET agents (Figure 25).  Their model predicts 

network metrics such as vulnerability, resiliency, and reliability by observing the 

cognitive agent interactions across the MANET and extrapolating meaning from 

those interactions. 

 

 

Figure 25.   Cognitive interactions between autonomic agents (From Ntuen and 
Kim 2011) 

Here to fore, this thesis focused on the comparison of autonomic agents to 

their individual human correlates in terms of management functions; however, in 

the broader physical aspect, MANETs more closely represent swarms of entities, 

similar to the sociological approach of Ntuen and Kim.  Each element in the mesh 
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exists independent of the rest of the network, but the strength of the MANET 

comes from the cumulative interactions of every node. Assuming a fully 

autonomic network, these interactions lead to emergent intelligent behavior that 

reflects the swarm’s collective strengths (e.g., cumulative RF gain from 

clustering, increasing network availability as the mesh becomes more dense) and 

vulnerabilities (e.g., increasing management complexity as the mesh grows) as 

the network seeks to adapt itself to its environment.   

Because of this emergent behavior combined with the inherent MANET 

properties of self-forming, self-organizing, and self-administering, research into 

Swarm Intelligence (SI) algorithms has become a leading field of study in 

MANET modeling and management (see Sharvani and Rangaswamy 2011; Y. 

Cho et al. 2010; Konak, Dengiz, and Smith 2011; Hunjet, Coyle, and Sorell 

2010).  Swarm intelligence describes the behavior of agents that work in a 

decentralized manner with no infrastructure controlling them. This is model 

makes the movement of nodes in a MANET analogous to a swarm of birds or fish 

moving collectively.  For this reason, SI attempts to describe the collective 

behavior of decentralized self-organized systems as a means of developing 

predictive and adaptive management solutions.  Using the conceptual framework 

of Swarm Intelligence, those SI algorithms serve as the basis for predictive and 

adaptive features within a MANET management system.  Because the general 

aim of SI adaptation algorithms seeks to maintain an optimally connected mesh, 

it naturally follows that the two prominent elements to model in any MANET are 

node mobility and link availability.   

1. Modeling Node Mobility and Link Availability 

As a leading class of SI algorithms, Particle Swarm Optimization (PSO) is 

a popular method for MANET predictive/adaptive network management 

(Sharvani and Rangaswamy 2011; Y. Cho et al. 2010; Konak, Dengiz, and Smith 

2011; Hunjet, Coyle, and Sorell 2010).  PSO is a population-based meta-heuristic 

that emulates the social behavior of species that live in the form of swarms in 
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nature.  In PSO, the aim of particles is to search for the optimal point in a 

continuous search space as they constantly move from one point to another 

according to their velocities (Konak, Dengiz, and Smith 2011).   

Use of PSO algorithms in an agent-based system will facilitate 

development of a shared worldview as each node works cooperatively to 

optimize the topology of the mesh.  In order to do so, every node shares specifics 

such as its relative position to neighboring nodes, relative velocities, number of 

concurrent links to neighboring nodes, and transmission power.  Recent 

implementations of PSO algorithms are useful to employment schemes inherent 

within the EMO/ECO concept.  

Swarm optimization algorithms have been proposed to control the 

autonomous relocation of nodes in response to anticipated link loss in a MANET 

(Hunjet, Coyle, and Sorell 2010; Sharvani and Rangaswamy 2011).  Other 

research has proposed methods on how to determine optimal node location in a 

MANET based on PSO clustering algorithms (Y. Cho et al. 2010).  While these 

node mobility models serve to ensure an optimal mesh topology, predicting the 

quality of the links themselves will form a much more holistic model of link quality 

and availability, and can serve to develop greater predictive capabilities 

throughout the network.  A novel approach to determining link quality and 

availability is to combine the generalized picture of PSO with link-specific 

attributes.  This approach models the network as a mechanical system with 

springs and a viscous damper.  Specifically, this approach models the 

communication energy cost as an artificial potential energy stored in springs, and 

nodes as objects with unit mass, moving according to the artificial force field, 

i.e.,, the negative gradient of an artificial potential function (S. Cho 2009).  

Essentially, this model attempts to relate a specific link quality as the change in 

tensile force and potential energy of a mechanical spring within some fluid 

(Figure 26). 
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Figure 26.   MANET structure modeled as a mechanical system in a viscous 
fluid: (a) connection with spring elements; and (b) connection with spring 
elements with a guide rail in contact with an obstacle (From S. Cho 2009) 

By combining the modeling aspects of both node mobility and link 

availability, a network planner can begin to anticipate changes to the network, or 

effectively plan the SoM with the network in mind.  This is especially useful 

because a planner can determine the optimal location to place nodes either prior 

to, or during tactical operations.  These methods, when taken together, have 

powerful implications for the implementation of a next-generation C2 system for 

the Marine Corps.  Some examples of this are:  

 Nodes autonomously re-tasking UAV’s to cover gaps in RF 
coverage 

 Modeling node topologies and the affect changes to that topology 
have on the network 

 Recognizing errant node movement outside of normal parameters 
as to infer alterations to the plan of attack (e.g., unplanned enemy 
contact, broken convoy vehicles en route) 

 Running simulations before conducting operations to determine 
gaps in the network throughout a proposed course of action 

These examples all support a COA development that takes into account 

network availability and quality as a central planning aspect in combat 

operations.  The systems that support this next generation command and control 

paradigm must be able to intuitively communicate the relationships between 
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nodes as well as those predictive elements that are crucial to preempting link 

loss or reduced fidelity across the network. 
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IV. USE-CASE SCENARIO DEVELOPMENT AND INTERFACE 
DEVELOPMENT CONSIDERATIONS 

This thesis identified several key underlying mechanisms that drive 

adaptive reasoning for an agent-based, policy-driven command and control 

system: (1) the VIRT concept, (2) a knowledge base, and (3) Case-Based 

reasoning.  Combined, these elements enable a shared contextual awareness 

across the network that allows intelligent nodes to coordinate activities, ultimately 

resulting in enhanced network availability and performance.  To develop this 

capability, this thesis studies how these elements are interlinked, and explores 

their respective functions within the agent-based PBNM framework.  This 

research uses observations and lessons learned from the Combined Warrior 

Interoperability Exercise 2012 (CWIX) and the Joint Interagency Field Exploration 

2012 Experiments (JIFX).  Both sets of experimentation used TrellisWare 

devices as the primary MANET platform from which all subjective experimental 

observations were made.  In both experiments, the TrellisWare platform provided 

voice/data services at the tactical level, emulating either fire team-sized, or 

individual operator elements. 

A. COMBINED WARRIOR INTEROPERABILITY EXERCISE (CWIX) 

The CWIX program focuses on interoperability among NATO C4 systems 

and provides a venue for experimental system testing and evaluation.  The CWIX 

exercise uses a testbed environment from ongoing Maritime Interdiction 

Operations (MIO) experimentation led by NPS’s Center for Network Innovation 

and Experimentation (CENETIX).  For NPS, the focus of CWIX 2012 was the 

examination of information flows associated with Position Location Information 

(PLI) management.  The TrellisWare devices supported an information 

management architecture for disseminating PLI data though a tactical ad hoc 

mesh network that integrated boarding teams with higher-level command centers 

and agencies (Bordetsky 2012).  CWIX 2012 was conducted between 4-18 June 

2012.  It contained three distinct phases, each reflecting different use-case 
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scenarios for how mobile ad hoc mesh networks would support information 

sharing for various types of MIO operations. 

 Phase One of the exercise deployed the TrellisWare devices aboard a 

passenger ferry from Karlskrona, Sweden to Gdynia, Poland.  The contact team 

operating the TW-230s and simulated a special MIO boarding team capable of 

detecting Chemical, Biological, Radiological, and Nuclear (CBRN) materials on a 

suspect vessel. The team swept the vessel for notional CBRN materials, and 

sent text reports and images back to higher headquarters in Bydgoszcz, Poland 

via a portable satellite communications (SATCOM) terminal operated by the 

boarding team officer. 

Phase Two involved tracking PLI information from the port at Gdynia to 

Bydgoszcz.  Three vehicles simulated a tracking scenario where nodes 

transmitted a continuous stream of PLI data between the vehicles and to higher 

headquarters via the portable SATCOM terminal from within one of the vehicles. 

Phase Three deployed the TW-230s in a Maritime Interdiction Operation in 

Souda Bay, Crete.  Operators deployed the TW-230s aboard security patrol 

boats to relay PLI and provide real-time video streaming and web services to all 

operators supporting the MIO. 

1. Examining Information Flows Within, and Across Networks 

In each phase of the experiment, the TW-230s provided a platform to 

demonstrate how the flow of information between different C2 systems performs 

depending on the needs of the operator and demonstrated how the application 

load across systems ultimately affected an operator’s ability to perform his or her 

function.  In Phase One, the primary information flow from the operator consisted 

mostly of unidirectional transfer of data gathered aboard the vessel to a 

command post in Bydgoszcz.  Little information back to the operator was 

required, as the operator’s mission only required sending products (e.g.,, pictures 

and textual data) back to a distant command center that would provide analysis 

and distribution of the information.  In this case, the information flow was 
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primarily one-way and illustrated the simplest information flow for tactical 

networks. This configuration required no specific information flows from higher 

echelons and reflected a fixed adaptation loop with a relatively static operating 

environment and information flows.  The agents in this case, would experience 

changes in PLI, and adapt network configuration metrics to maximize upload 

speed.  A knowledge base in this case would need to use a priori experiences 

from previous boarding events to reflect the environmental constraints and 

restraints inherent in a physically compact environment (i.e., stairwells, berthing 

corridors, compartments) to maximize network availability throughout the vessel.   

The VIRT approach is appropriate in this case as a means to ensure 

minimal traffic across the network, thereby allowing more available throughput for 

large file transfers.  The communications planner could implement a VIRT 

configuration where the TW-230’s only transmit triangulated PLI data when in 

motion, instead of when static.  This would ensure that the overhead associated 

with tracking operators throughout the vessel would not impede bandwidth when 

the operator was tethered to a computer and sending products back to 

headquarters.  The quality of information flows in this case were tied to an 

adaptation loop that considered if the operator was in motion or not, and adapted 

network configuration traffic patterns as a result.  Rules from this use-case 

scenario could be adapted to Marine Corps operations: in the case when the 

system detects the presence of a large file transfer event, to maximize the 

throughput for sending the file reliably and quickly, a shift to only transmitting only 

moving PLI data could temporarily go into effect. 

In Phase Two, the focus of effort for information sharing was sending 

reliable and accurate PLI data from the vehicles to a command center in 

Bydgoszcz.  The PLI data did not depend on operator action; the nodes 

autonomously generated and relayed PLI data.  In this case, the PLI data 

represented rapid movement of vehicles across a large geographic region.  As 
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such, the absolute accuracy was not critical to operators in Bydgoszcz who only 

needed PLI accuracy to within several hundred meters to reliably track vehicle 

movement across Poland.   

This use-case represents another scenario where an application specific 

knowledge base, VIRT, and CBR concepts used cooperatively would efficiently 

communicate relevant PLI information to command center operators.  The lesson 

learned from this phase was that situational awareness metrics change 

according to the general scheme of maneuver.  While it would be relevant to 

have deck-by-deck PLI while onboard a ship, command center operators only 

need broad PLI for vehicle-borne movement (~5km fidelity) as PLI served as a 

general reference indicator across a large geographic region.  Again, in this use-

case scenario, the agents must be able to not only see the lower level of 

maintain the network, but be involved in maximizing the network for specific data 

flows that are relevant to the scheme of maneuver.   

By providing a C2 system with too much granularity, operators can be 

overwhelmed by information that does not add value to the operation.  For 

example, when vehicles were in movement within an urban environment, too 

much PLI data obscured the general route that the target and chase vehicles 

were taking (Figure 27).  In this case, an agent could have a general awareness 

of the mission and use application specific knowledge base parameters, CBR, 

and VIRT to determine transmission criteria (e.g.,, send PLI either every 5 

minutes or every 5 km of movement).  This would serve to limit the frequency of 

PLI updates to the system, thereby reducing visual glut in the PLI tracking 

system at the command center. 
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Figure 27.   Example of trace PLI data clutter (From Bordetsky 2012) 

Phase Three combined both application streams and PLI tracking into a 

simulated containment and boarding scenario.  Patrol vessels contained a 

suspect vessel entering Souda Bay and conduct boarding activities to search for 

illicit materials and vet suspects against an anti-terrorism database.  This scheme 

of maneuver required access to data services as well as transmitting real-time 

video and PLI information to higher headquarters.  Due to the nature of the 

activity, reliable and ample throughput was required to successfully conduct 

operations without delay or error.  Operators on the boarding teams needed rapid 

access to a database that was hosted at a facility not in the same geographic 

region, and command center operators needed uninterrupted access to the PLI 

and video feeds to adequately provide oversight and control of the operation.  

This two-way information flow represented a vigorous use-case scenario similar 

to most network activities expected within the EMO/ECO employment concept.  

This use-case, along with the others from CWIX, further supported the need to 

expand the knowledge base and CBR concept to include application specific 

adaptation loops.  The knowledge base and CBR needed to address not only the 

health of the network, but the quality of application data across the network.   
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2. Knowledge Base, VIRT, and CBR Considerations 

The lessons learned from CWIX proved that (1) the operator role is a 

prominent element in the design of autonomic management for information flows 

throughout a network, (2) that application flows must reach down to the individual 

node, and (3) every node is involved in the creation and dissemination of 

information—not just maintaining the mesh.  This extends the basic premise of 

VIRT and supports the validity of incorporating VIRT in the development of 

EMO/ECO command and control concepts.  This emphasis on relating the 

human element as a driver of information flow has a few implications for design 

considerations for a knowledge base and case-based reasoning mechanisms.   

Further expanding the basic DPR framework described by Hadjiantonis 

and Pavlou (2009), the VIRT COI repository (as part of a distributed knowledge 

base) would integrate human/agent pairings with a generalized set of pre-defined 

policies reflecting mission objectives.  By defining COIs to reflect mission 

priorities for each human/agent paring, a CBR decision-making cycle can 

prioritize application-specific traffic as the mission requirements dictate.  Taking 

the CWIX experimentation as an example, using a VIRT/CBR framework, a 

MANET agent can determine when real-time video should receive priority for 

bandwidth, managing not only the quality of network itself, but managing 

application load across the network to maximize the availability and quality of the 

video.  In concert, agents across the network could ensure that the video stream 

finds the optimal path to reach intended recipients, with a pre-determined desired 

level of clarity and fidelity.  

Designing knowledge base parameters to include aspects relating to 

application load is an enhancing element to the basic underlying autonomic 

processes this thesis has discussed.  Inclusion of these contextual parameters is 

critical when considering the quality and availability of the services those 

applications provide to the operator.  For this reason, it is not enough that the 

autonomic agents work to increase the quality of the network; they must have 

elements that enhance the quality of services across that network.  In his 
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research, Puff (2011) described a similar mechanism, using SNMP MIB variables 

to describe qualitative metrics such as node status or network status as 

surrogates for inferring quality of the network, but he did not include variables 

describing services over the network.   

This research proposes the use of a metadata taxonomy similar to Oros’ 

(2007) research on semantic modeling and implementation of VIRT architectures 

for tactical operations (Oros 2007).  This metadata would provide further context 

to application streams, identifying not only the type of traffic, but the content as 

well.  This approach would support a publish/subscribe VIRT mechanism where 

operators would post subscription requests to streams of information that are 

valuable to them and the agents would only send (or send with priority) those 

information streams only as required.  Using the phase three video stream 

scenario as an example, the node would announce a video feed service over the 

network.  It would also provide context to the video stream by including metadata 

such as activity (e.g.,, aboard target vessel), originator (e.g.,, vehicle or helmet 

camera), or quality (e.g.,, optimized for mobile devices).  Research at NPS 

describes this metadata as an extension of the SNMP MIB format (Gateau 2007).  

Figure 28 illustrates some potential MIB variables that supports publish/subscribe 

VIRT mechanisms.  This kind of metadata allows nodes to intelligently prioritize 

and direct application streams as human operators need them.  This has the 

effect of not only reducing traffic over the network, but ensuring that operators 

only receive relevant information as defined by their COIs. 
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Figure 28.   Provided Services Metadata Table (From Gateau 2007) 

B. JOINT INTERAGENCY FIELD EXPLORATION (JIFX) 

The Naval Postgraduate School hosted a Joint Describing Interagency 

Field Exploration (JIFX) event 13-17 August 2012 at Camp Roberts, California.  

The JIFX event included science and technology representatives from each of 

the Unified Combatant Commands (COCOMs), Department of Homeland 

Security (DHS), and representatives from various academic and industry 

organizations.  The focus of this event was to explore the potential of novel and 

emerging technological capabilities for the COCOMs and DHS, and how to 

integrate those technologies into evolving DoD/DHS capability needs (Allen 

2012).   

As part of the NPS experimentation team, personnel from NPS, Drexel 

University, and the Naval Research Lab deployed a fireteam-sized element2 of 

four TW-230 radios to Camp Roberts.  The purpose of this experimentation for 

NPS was to conduct initial field-testing of a prototype graphical user interface 

                                            
2 USMC fireteams are the smallest infantry element consisting of four Marines: a team 

leader, rifleman, automatic rifleman, and assistant automatic rifleman 
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(GUI) for representing real-time network quality in a heat map interface.  

Development of this GUI is in direct support to further development of the MCWL 

NMS-TM project as it enables an operator to intuitively grasp the strength and 

gaps of the network as a graphical overlay on real-time PLI data points and 

adjust network topology accordingly.  Experiments conducted at JIFX contributed 

to refining the underlying algorithms used to develop the heat map overlay, and 

to conduct a proof-of-concept for the interface. 

1. Refining Predictive Capabilities and Developing Intuitive User 
Interfaces 

Expanding upon the initial design elements described by previous 

research at NPS (Puff 2011), the Naval Postgraduate School has focused on 

development of the prototype heat map application by examining network 

availability and quality as a function of the Signal-to-Noise Ratio (SNR) between 

subject nodes within a generic foliage RF propagation model.  The heat map 

design is based on SNR as a sole indicator of network performance--this was an 

explicit design choice. NPS has hypothesized that SNR most directly correlates 

RF and network quality following the assumption is that higher SNR values will 

directly correlate to higher qualitative network assessments (Bourakov 2012).  

During JIFX, NPS performed field trials to refine the correlations between SNR 

and network quality and to provide a real-world demonstration of the real-time 

GUI concept (Figure 29).  The design of the heat map is not limited to SNR only.  

As development continues, NPS expects to incorporate other metrics in its 

multivariate analysis (e.g.,, hop count and power output). 

The deployment of the heat map prototype at JIFX demonstrates the 

knowledge base development concepts discussed within this thesis (see Chapter 

3, section b.1).  As more data gained from use-cases discovers emergent 

relationships between variables, the knowledge base will enrich the correlation 

between those key network metrics (e.g.,, SNR, hop count, and power output) 

and provide greater fidelity in the graphical interface.  This feature of shared 

knowledge enriched by the collective experience of the network serves to 
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illustrate how an autonomic network will tend towards systems that possess a 

holistic view of the network and intuitively communicate the relationship between 

nodes on the network. 

 

 

Figure 29.   Heat Map Graphical User Interface Intuitively Displaying SNR As 
An Indicator of Network Quality (From Bourakov 2012) 
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V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 
FOR FUTURE WORK 

The goal of this thesis is to describe a framework for a network 

management system that supports a robust self-management capability in 

MANETs.  The motivation comes from developing Marine Corps tactical 

operations and command and control concepts.  The major underlying concept 

for this research is an agent-based, policy-enabled network management 

framework for autonomic networks. 

This research began by outlining the operating space defined by the 

Marine Corps’ EMO/ECO concept, and how MANET systems are able to support 

tactical operations across a distributed and adaptive command and control force 

employment model.  To maximize the capability of a network across these 

distributed and adaptive operations, planners must employ likewise-distributed 

and adaptive communications architectures.  In this ubiquitous networking 

concept, the strength of the network lies with the nodes that comprise the 

physical edge of the network, implying the need that every entity on the 

battlefield represents a node on the network.  Network management should then 

begin at the lowest maneuver elements to facilitate coordination of decentralized 

operations.   

Such a bottom-up, distributed command and control structure serves as 

the foundation for an autonomic network framework that serves to evolve the 

network as a much more integral and active participant in the tactical 

environment.  Therefore, every node must possess some self-contained 

autonomic management capability to distribute network management activities 

down to the individual node.  The nature of this framework revolves around the 

knowledge element that serves as the hub from which an agent’s autonomic 

decision-making cycle revolves.  Critical elements of this proposed framework 

are a mobile agent (as an instance of the 8th layer hypernode concept described 

in Bordetsky and Hayes-Roth 2009), PBNM architecture, and a knowledge base 
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supported CBR decision-making cycle.  These three elements work together to 

form the root of the self-contained adaptive reasoning characteristic of autonomic 

networks. 

A. CONCLUSIONS 

Autonomic networks represent the ideal end state for the MCWL NGC2 

conceptual NMS.  While attaining this end state is beyond current capabilities of 

MANET platforms such as the TW-230 and existing C2 NMS programs, this 

research has identified how to build upon these existing systems towards 

attaining a true autonomic network.  As a first step, this thesis examined the 

frameworks described by ADMA, DRAMA, and other research on policy-based 

network management and extended them to include an agent-based 

predictive/adaptive reasoning component.   

Autonomic network management system begins with an agent-based 

framework.  The agent represents a logical instance of a node and facilitates the 

employment of all the elements of autonomic network entities: contextual 

awareness, policy decisions, and policy execution.  The ADMA specification, as 

an existing implementation of the basic 8th layer hypernode concept, provides a 

sufficient starting point to define the agents themselves.  ADMA provides a solid 

framework for contextual processing, internal policy storage and analysis, and 

mechanisms for policy enforcement.  These elements combined, comprise the 

agent system for every node and support the higher-level predictive/adaptive 

capabilities characteristic of autonomous networks. 

Since these predictive/adaptive capabilities are the key enabling 

characteristic of autonomic networks, they should serve as the desired end state 

in evolving our current C2 capabilities.  Building upon an agent framework to 

house this capability within every node, the broader framework for autonomic 

networks next requires a robust policy-enabled network management system.  

The DRAMA architectural framework provides an excellent PBNM system upon 

which to build.  As a PBNM, DRAMA has many essential elements for defining, 
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storing, distributing, and enforcing policy across a MANET.  This policy-enabled 

management system is crucial for emulating the mission-type orders paradigm 

that must exist in a MANET supporting tactical operations.  However, DRAMA 

does not include mechanisms for combining policy with context-awareness and 

knowledge derived some self-awareness within a hypernode. To extend this 

functionality to the existing DRAMA architecture, this research proposes inclusion 

of a knowledge base element to the policy elements that reside within the 

DRAMA framework. 

Everything in the autonomic decision-making cycle revolves around the 

knowledge element; therefore, defining this element must be the first step 

towards defining a PBNM that ties network management activities with combat 

planning and execution.  Hadjiantonis and Pavlou’s (2009) DPR framework 

clearly describes how a knowledge base combines contextual awareness and 

policy actions to towards maximizing network quality and availability.  However, 

the framework omits mechanisms to evaluate and recommend policy actions and 

control for possible policy conflict.  Inclusion of CBR mechanisms within the 

policy control and execution phases of the autonomic cycle is critical in this 

respect.  Since CBR employs the knowledge gained from experiences of the 

network to evaluate and recommend actions, CBR intuitively tends towards those 

crucial predictive and adaptive characteristics of autonomic networks. 

A knowledge base, therefore, represents the collective memory of every 

node in the network, from which past experiences serve to support a competent 

decision-making cycle.  This approach combines past policy events with current 

contextual inputs to make rapid policy execution decisions that 

are much less computationally intensive than other proposed 

approaches such as multivariate calculations of Pareto boundaries (Bordetsky 

and Hayes-Roth 2009).  This reliance on experiences also supports 

reuse of the knowledge base for employment of a network in a new AOR.  For 

example, an outbound unit in Afghanistan can provide a knowledge base to the 
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incoming unit to load into their own NGC2 system, imparting all the learned 

experiences from the outbound unit’s network.   

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

While the scope of this thesis described an agent-based, policy-enabled, 

autonomic command and control system framework, the mechanisms 

themselves that enable this capability are yet to be developed.  Further research 

should work towards combining those separate, but complimentary mechanisms. 

A major underlying element of any autonomic system is an effective policy 

creation, distribution, and management mechanism.  While the DRAMA 

framework and work by Hadjiantonis and Pavlou (2009) provide the general 

outline for what a PBNM needs to do, they do little in terms of the human 

interface aspect.  Further work should focus on development of human interfaces 

for designing policies, managing policy interactions across a network, and 

displaying those policy interactions in an intuitive way.  A GUI of this type should 

be designed to allow a communications planner to construct policies for his or 

her network and facilitate the distribution and management of those policies. 

Concurrent with developing intuitive GUIs for policy creation and 

dissemination, future research should address the need for similar mechanisms 

when interfacing with a system’s knowledge base.  Development of this interface 

should include development of knowledge base parameters and mechanisms to 

construct condition/action couplings and to link those couplings with policy 

enforcement mechanisms. 

This thesis provides the framework needed to transform the Marine Corps’ 

C2 concepts and capabilities by evolving tactical network management towards a 

capability that reflects a symbiosis between the operation’s assets, the human 

elements, and the networks.  Further research into the underlying principles 

contained within this framework can assist in the development of a command and 

control paradigm that compliments and enhances the Marine Corps’ combat 

doctrine. 
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